Groups and semigroups: connections and contrasts

نویسنده

  • John Meakin
چکیده

Group theory and semigroup theory have developed in somewhat different directions in the past several decades. While Cayley’s theorem enables us to view groups as groups of permutations of some set, the analogous result in semigroup theory represents semigroups as semigroups of functions from a set to itself. Of course both group theory and semigroup theory have developed significantly beyond these early viewpoints, and both subjects are by now integrally woven into the fabric of modern mathematics, with connections and applications across a broad spectrum of areas. Nevertheless, the early viewpoints of groups as groups of permutations, and semigroups as semigroups of functions, do permeate the modern literature: for example, when groups act on a set or a space, they act by permutations (or isometries, or automorphisms, etc), whereas semigroup actions are by functions (or endomorphisms, or partial isometries, etc). Finite dimensional linear representations of groups are representations by invertible matrices, while finite dimensional linear representations of semigroups are representations by arbitrary (not necessarily invertible) matrices. The basic structure theories for groups and semigroups are quite different one uses the ideal structure of a semigroup to give information about the semigroup for example and the study of homomorphisms between semigroups is complicated by the fact that a congruence on a semigroup is not in general determined by one congruence class, as is the case for groups. Thus it is not surprising that the two subjects have developed in somewhat different directions. However, there are several areas of modern semigroup theory that are closely connected to group theory, sometimes in rather surprising ways. For example, central problems in finite semigroup theory (which is closely connected to automata theory and formal language theory) turn out to be equivalent or at least very closely related to problems about profinite groups. Linear algebraic monoids have a rich structure that is closely related to the subgroup structure of the group of units, and this has interesting connections with the well developed theory of (von Neumann) regular semigroups. The theory of inverse semigroups (i.e. semigroups of partial one-one functions) is closely tied to aspects of geometric and combinatorial group theory. In the present paper, I will discuss some of these connections between group theory and semigroup theory, and I will also discuss some rather surprising contrasts between the theories. While I will briefly mention some aspects of finite semigroup theory, regular semigroup theory, and the theory of linear algebraic monoids, I will focus primarily on the theory of inverse semigroups and its connections with geometric group theory. For most of what I will discuss, there is no loss of generality in assuming that the semigroups under consideration have an identity one can always just adjoin an identity to a semigroup if necessary so most semigroups under consideration will be monoids, and on occasions the group of units (i.e. the group of invertible elements of the semigroup) will be of considerable interest.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Amenability of groups and semigroups characterized by‎ ‎configuration

In 2005, A. Abdollahi and A. Rejali, studied the relations betweenparadoxical decomposition and configuration for semigroups. In thepresent paper, we introduce one other concept of amenability typeon semigroups and groups which includes amenability of semigroupsand inner-amenability of groups. We have extend the previous knownresults to semigroups and groups satisfying this concept.

متن کامل

-

In this paper we introduce R-right (left), L-left (right) cancellative and weakly R(L)-cancellative semigroups and will give some equivalent conditions for completely simple semigroups, (completely) regular right (left) cancellative semigroups, right (left) groups, rectangular groups, rectangular bands, groups and right (left) zero semigroups according to R-right (left), L-left (right) and weak...

متن کامل

Examples of non-quasicommutative semigroups decomposed into unions of groups

Decomposability of an algebraic structure into the union of its sub-structures goes back to G. Scorza's Theorem of 1926 for groups. An analogue of this theorem for rings has been recently studied by A. Lucchini in 2012. On the study of this problem for non-group semigroups, the first attempt is due to Clifford's work of 1961 for the regular semigroups. Since then, N.P. Mukherjee in 1972 studied...

متن کامل

Classification of Monogenic Ternary Semigroups

The aim of this paper is to classify all monogenic ternary semigroups, up to isomorphism. We divide them to two groups: finite and infinite. We show that every infinite monogenic ternary semigroup is isomorphic to the ternary semigroup O, the odd positive integers with ordinary addition. Then we prove that all finite monogenic ternary semigroups with the same index...

متن کامل

On the Graphs Related to Green Relations of Finite Semigroups

In this paper we develop an analog of the notion of the con- jugacy graph of  nite groups for the  nite semigroups by considering the Green relations of a  nite semigroup. More precisely, by de ning the new graphs $Gamma_{L}(S)$, $Gamma_{H}(S)$, $Gamma_{J}(S)$ and $Gamma_{D}(S)$ (we name them the Green graphs) related to the Green relations L R J H and D of a  nite semigroup S , we  first atte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005